A Two-Phase Cross-Modality Fusion Network for Robust 3D Object Detection

Author:

Jiao Yujun,Yin ZhishuaiORCID

Abstract

A two-phase cross-modality fusion detector is proposed in this study for robust and high-precision 3D object detection with RGB images and LiDAR point clouds. First, a two-stream fusion network is built into the framework of Faster RCNN to perform accurate and robust 2D detection. The visible stream takes the RGB images as inputs, while the intensity stream is fed with the intensity maps which are generated by projecting the reflection intensity of point clouds to the front view. A multi-layer feature-level fusion scheme is designed to merge multi-modal features across multiple layers in order to enhance the expressiveness and robustness of the produced features upon which region proposals are generated. Second, a decision-level fusion is implemented by projecting 2D proposals to the space of the point cloud to generate 3D frustums, on the basis of which the second-phase 3D detector is built to accomplish instance segmentation and 3D-box regression on the filtered point cloud. The results on the KITTI benchmark show that features extracted from RGB images and intensity maps complement each other, and our proposed detector achieves state-of-the-art performance on 3D object detection with a substantially lower running time as compared to available competitors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference58 articles.

1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

2. Deep Nets: What have they ever done for Vision?;Yuille;arXiv,2018

3. 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection;Yoo;arXiv,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3