A Transferable Lidar-Based Method to Conduct Contactless Assessments of Gait Parameters in Diverse Home-like Environments

Author:

Single Michael1ORCID,Bruhin Lena C.1ORCID,Colombo Aaron1ORCID,Möri Kevin1ORCID,Gerber Stephan M.1ORCID,Lahr Jacob2ORCID,Krack Paul3ORCID,Klöppel Stefan2ORCID,Müri René M.1ORCID,Mosimann Urs P.1ORCID,Nef Tobias13ORCID

Affiliation:

1. Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, 3012 Bern, Switzerland

2. University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3012 Bern, Switzerland

3. Department of Neurology, Inselspital, University Hospital Bern, University of Bern, 3012 Bern, Switzerland

Abstract

Gait abnormalities in older adults are linked to increased risks of falls, institutionalization, and mortality, necessitating accurate and frequent gait assessments beyond traditional clinical settings. Current methods, such as pressure-sensitive walkways, often lack the continuous natural environment monitoring needed to understand an individual’s gait fully during their daily activities. To address this gap, we present a Lidar-based method capable of unobtrusively and continuously tracking human leg movements in diverse home-like environments, aiming to match the accuracy of a clinical reference measurement system. We developed a calibration-free step extraction algorithm based on mathematical morphology to realize Lidar-based gait analysis. Clinical gait parameters of 45 healthy individuals were measured using Lidar and reference systems (a pressure-sensitive walkway and a video recording system). Each participant participated in three predefined ambulation experiments by walking over the walkway. We observed linear relationships with strong positive correlations (R2>0.9) between the values of the gait parameters (step and stride length, step and stride time, cadence, and velocity) measured with the Lidar sensors and the pressure-sensitive walkway reference system. Moreover, the lower and upper 95% confidence intervals of all gait parameters were tight. The proposed algorithm can accurately derive gait parameters from Lidar data captured in home-like environments, with a performance not significantly less accurate than clinical reference systems.

Funder

BRIDGE

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3