Hollow Concrete Block Based on High-Strength Concrete as a Tool for Reducing the Carbon Footprint in Construction

Author:

Elistratkin Mikhail1,Salnikova Alena1,Alfimova Nataliya1ORCID,Kozhukhova Natalia2ORCID,Pospelova Elena3

Affiliation:

1. Department of Building Materials Science, Products and Structures, Belgorod State Technological University Named after V.G. Shukhov, 46 Kostyukova Str., 308012 Belgorod, Russia

2. Department of Material Science and Material Technology, Belgorod State Technological University Named after V.G. Shukhov, 46 Kostyukova Str., 308012 Belgorod, Russia

3. Department of Standardization and Quality Management, Belgorod State Technological University Named after V.G. Shukhov, 46 Kostyukova Str., 308012 Belgorod, Russia

Abstract

The production and servicing of cement-based building materials is a source of large amounts of carbon dioxide emissions globally. One of the ways to reduce its negative impact, is to reduce concrete consumption per cubic meter of building structure through the introduction of hollow concrete products. At the same time, to maintain the load-bearing capacity of the building structure, it is necessary to significantly increase the strength of the concrete used. However, an increase in strength should be achieved not by increasing cement consumption, but by increasing the efficiency of its use. This research is focused on the development of technology for the production of thin-walled hollow concrete blocks based on high-strength, self-compacting, dispersed, micro-reinforced, fine-grained concrete. The use of this concrete provides 2–2.5 times higher strength in the amount of Portland cement consumed in comparison with ordinary concrete. The formation of external contours and partitions of thin-walled hollow blocks is ensured through the use of disposable formwork or cores used as void formers obtained by FDM 3D printing. This design solution makes it possible to obtain products based on high-strength concrete with higher structural and thermal insulation properties compared to now existing lightweight concrete-based blocks. Another area of application of this technology could be the production of wall structures of free configuration and cross-section due to their division, at the digital modeling stage, into individual element-blocks, manufactured in a factory environment.

Funder

Program «Priority 2030» on the base of the Belgorod State Technological University named after V G Shukhov

High Technology Center at BSTU named after V. G. Shukhov

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3