Synergistic Effect in MoS2 Nanosheets–Biochar Nanocomposites with Enhanced Surface Area and Electrical Conductivity for Energy Storage Applications

Author:

Pandiselvi Thangaraj1,Praveena Chithiraiselvan1,Sridevi Venkatachalam1ORCID,Venmathi Maran Balu Alagar2ORCID,Kimura Masanari3

Affiliation:

1. Department of Chemistry, Lady Doak College, Madurai 625 002, Tamil Nadu, India

2. Graduate School of Integrated Science and Technology, Nagasaki University, 1–14 Bunkyomachi, Nagasaki 852-8521, Japan

3. Graduate School of Engineering, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan

Abstract

Layered molybdenum disulfide (MoS2), a transition metal dichalcogenide, shows distinct optical, electrical, and physical properties at a few-layer thickness. MoS2 nanosheets (NSs) widely explored for energy and environmental applications but have limitations with respect to their electrical conductivity and charge transfer characteristics due to their low surface area. These limitations can be overcome by combining MoS2 NSs with carbon-based materials like graphene, carbon nanotubes, and biochar, which can enhance the properties in a synergistic way. In this study, biochar (BC), a carbon-rich material prepared from vegetable biomass through low-temperature pyrolysis has been combined with bulk MoS2 in various ratios using an aqueous phase exfoliation method to form MoS2 NSs–biochar nanocomposites. The spectroscopic, structural, and morphological studies confirmed the synergistic interaction between MoS2 and BC, which is well reflected in the facile exfoliation process and the formation of few layered MoS2 NSs on the surface of the BC without any agglomeration. The electrochemical studies prove that incorporating biochar into MoS2 enhances the capacitive behavior and reduces the charge transfer resistance compared to pristine MoS2 NSs and pristine biochar. This study provides ample scope for the composite to be explored for energy storage applications, especially towards the development of electrode materials due to the synergistic effect between MoS2 NSs and biochar.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3