Simulating Biomass Production and Water Use of Poplars in a Plantation Using a STELLA-Based Model

Author:

Ouyang YingORCID,Dev SatyanarayanORCID,Grace III Johnny M.ORCID,Amatya Devendra M.ORCID,Leininger Theodor D.

Abstract

Poplar trees (Populus spp.) are some of the fastest growing hardwoods used for biomass production. There are, however, conflicting observations about water use of poplars associated with the impact on local water resources. A STELLA (Structural Thinking and Experiential Learning Laboratory with Animation) model was modified to investigate the aboveground biomass production and water use in a mature (6 to 8 yrs. old) poplar plantation for a 3-year simulation period. The model predicted the typical annual pattern of soil evaporation, root water uptake, and leaf water transpiration in the poplar plantation increasing from winter to summer followed by respective decreases from summer to winter. Root water uptake and leaf water transpiration were proportional to the soil water content. More water was needed to produce the same amount of biomass during summer than during other seasons. Less water was consumed to produce the same amount of biomass as the age of the poplar trees increased. The net increase in biomass over the 3-year period was 0.69 × 104 kg/ha, which was equivalent to a 65% increase in biomass. The average rate of daily water use to daily biomass production was 1.05 × 109 cm3 water/kg biomass/ha. A good linear correlation between cumulative biomass production (CBP) and cumulative water use (CWU) was identified: YCBP = 0.001 ∗ XCWU, R2 = 0.99, p < 0.001. This simple correlation provides a very good reference to estimate poplar water use efficiency (i.e., ratio of water use to biomass production) in growing regions where water resources are a limiting factor.

Publisher

MDPI AG

Subject

Forestry

Reference36 articles.

1. Farm Energy and Wood Energy, Poplar (Populus spp.) Trees for Biofuel Productionhttps://farm-energy.extension.org/poplar-populus-spp-trees-for-biofuel-production/

2. Hybrid poplar in the Pacific Northwest: The effects of market-driven management;Stanton;J. Forestry,2002

3. Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe

4. Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3