Forest Conversion and Soil Depth Can Modify the Contributions of Organic and Inorganic Colloids to the Stability of Soil Aggregates

Author:

Li ChongORCID,Yu Zizhou,Lin Jie,Meng Miaojing,Zhao Youpeng,Jia Zhaohui,Peng Xiaonan,Liu Xin,Zhang JinchiORCID

Abstract

The stability of soil aggregates is critical for maintaining soil structures and is positively correlated with soil resident organic and inorganic colloids. Forest conversion and soil depth affects the formation of soil aggregates; however, the detailed mechanisms involved in their stabilization have not been well investigated. Therefore, to explore the main factors that influence the stability of soil aggregates for different forest types and soil depths, twelve soil samples were collected from four types of forests (native, mixed, Chinese fir, and bamboo forest) and three soil depths (0–10 cm, 10–20 cm, and 20–30 cm) in subtropical forests. The results revealed that the distributions and mean weight diameters (MWDs) of large macroaggregates in the bamboo forest were significantly lower than those in the other forest types at all soil depths (p < 0.05). Organic and inorganic colloids (organically-complexed Fe oxide and fulvic acid) in the soil directly impacted the stability of soil aggregates, while soil properties (e.g., pH and bulk density) indirectly promoted soil aggregate stability through the modification of colloids. In both native and bamboo forests, organic colloids contributed most to the stability of soil aggregates, reaching 80.31% and 61.37%, respectively. The contributions of organic colloids were found to decrease with soil depth, which was primarily due to changes in the organic matter caused by the decomposition of litter. Elucidating and promoting the specific contributions of organic and inorganic colloids on the stability of soil aggregates will be increasingly important for the optimal management of different forest types.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3