Abstract
Soft sensors based on deep learning approaches are growing in popularity due to their ability to extract high-level features from training, improving soft sensors’ performance. In the training process of such a deep model, the set of hyperparameters is critical to archive generalization and reliability. However, choosing the training hyperparameters is a complex task. Usually, a random approach defines the set of hyperparameters, which may not be adequate regarding the high number of sets and the soft sensing purposes. This work proposes the RB-PSOSAE, a Representation-Based Particle Swarm Optimization with a modified evaluation function to optimize the hyperparameter set of a Stacked AutoEncoder-based soft sensor. The evaluation function considers the mean square error (MSE) of validation and the representation of the features extracted through mutual information (MI) analysis in the pre-training step. By doing this, the RB-PSOSAE computes hyperparameters capable of supporting the training process to generate models with improved generalization and relevant hidden features. As a result, the proposed method can generate more than 16.4% improvement in RMSE compared to another standard PSO-based method and, in some cases, more than 50% improvement compared to traditional methods applied to the same real-world nonlinear industrial process. Thus, the results demonstrate better prediction performance than traditional and state-of-the-art methods.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献