Sintered Brake Pads Failure in High-Energy Dissipation Braking Tests: A Post-Mortem Mechanical and Microstructural Analysis

Author:

Mege-Revil Alexandre1ORCID,Rapontchombo-Omanda Jessie1ORCID,Serrano-Munoz Itziar12ORCID,Cristol Anne-Lise1,Magnier Vincent1,Dufrenoy Philippe1

Affiliation:

1. UMR 9013—LaMcube—Laboratoire de Mécanique, Multiphysique, Multiéchelle, Université de Lille, CNRS, Centrale Lille, F-59000 Lille, France

2. Bundesanstalt für Materialforschung und-Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany

Abstract

The industrial sintering process used to produce metallic matrix pads has been altered to diminish the amount of copper used. Unfortunately, replacing a large part of the copper with iron seems to have reached a limit. In the high-energy, emergency-type rail braking used in this study, the materials are put to the very limit of their usage capacity, allowing us to observe the evolution of the microstructure and mechanical properties of sintered, metallic matrix pads. After the braking test, their compressive behaviour was assessed using digital image correlation (DIC), and their microstructure with scanning electron microscopy (SEM). The worn material has three flat layers with different microstructures and compressive behaviours. The bottom layer seems unmodified. Macroscopic and microscopic cracks run through the intermediate layer (2–15 mm depth). The top layer has stiffened thanks to resolidification of copper. The temperature reaches 1000 °C during the braking test, which also explains the carbon diffusion into iron that result in the weakening of iron –graphite interfaces in the pad. Finally, submicronic particles are detected at many open interfaces of the worn and compressed pad. Associated with the predominant role of graphite particles, this explains the weak compressive behaviour of the pads.

Funder

French National Research Agency

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3