Study of Elastic and Structural Properties of BaFe2As2 Ultrathin Film Using Picosecond Ultrasonics

Author:

Cheng Di12ORCID,Song Boqun12,Kang Jong-Hoon3,Sundahl Chris3,Edgeton Anthony L.3,Luo Liang12ORCID,Park Joong-Mok12,Collantes Yesusa G.4,Hellstrom Eric E.4,Mootz Martin5ORCID,Perakis Ilias E.5,Eom Chang-Beom3,Wang Jigang12ORCID

Affiliation:

1. Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

2. Ames National Laboratory-USDOE, Ames, IA 50011, USA

3. Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

4. Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA

5. Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA

Abstract

We obtain the through-thickness elastic stiffness coefficient (C33) in nominal 9 nm and 60 nm BaFe2As2 (Ba-122) thin films by using picosecond ultrasonics. Particularly, we reveal the increase in elastic stiffness as film thickness decreases from bulk value down to 9 nm, which we attribute to the increase in intrinsic strain near the film-substrate interface. Our density functional theory (DFT) calculations reproduce the observed acoustic oscillation frequencies well. In addition, temperature dependence of longitudinal acoustic (LA) phonon mode frequency for 9 nm Ba-122 thin film is reported. The frequency change is attributed to the change in Ba-122 orthorhombicity (a−b)/(a+b). This conclusion can be corroborated by our previous ultrafast ellipticity measurements in 9 nm Ba-122 thin film, which exhibit strong temperature dependence and indicate the structural phase transition temperature Ts.

Funder

Ames National Laboratory, the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division under contract

US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3