Size Effect of Graphene Oxide on Graphene-Aerogel-Supported Au Catalysts for Electrochemical CO2 Reduction

Author:

Shen Shuling1,Pan Xuecong1,Wang Jin1,Bao Tongyu1,Liu Xinjuan1,Tang Zhihong1,Xiu Huixin1,Li Jing1

Affiliation:

1. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

The lateral size of graphene nanosheets plays a critical role in the properties and microstructure of 3D graphene as well as their application as supports of electrocatalysts for CO2 reduction reactions (CRRs). Here, graphene oxide (GO) nanosheets with different lateral sizes (1.5, 5, and 14 µm) were utilized as building blocks for 3D graphene aerogel (GA) to research the size effects of GO on the CRR performances of 3D Au/GA catalysts. It was found that GO-L (14 µm) led to the formation of GA with large pores and a low surface area and that GO-S (1.5 µm) induced the formation of GA with a thicker wall and isolated pores, which were not conducive to the mass transfer of CO2 or its interaction with catalysts. Au/GA constructed with a suitable-sized GO (5 µm) exhibited a hierarchical porous network and the highest surface area and conductivity. As a result, Au/GA-M exhibited the highest Faradaic efficiency (FE) of CO (FECO = 81%) and CO/H2 ratio at −0.82 V (vs. a Reversible Hydrogen Electrode (RHE)). This study indicates that for 3D GA-supported catalysts, there is a balance between the improvement of conductivity, the adsorption capacity of CO2, and the inhibition of the hydrogen evolution reaction (HER) during the CRR, which is related to the lateral size of GO.

Funder

Shanghai Pujiang Program

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

1. The rise of graphene;Geim;Nat. Mater.,2007

2. Single-crystal, large-area, fold-free monolayer graphene;Wang;Nature,2021

3. Recent Progress on Thermal Conduction of Graphene;Song;Acta Phys.-Chim. Sin.,2022

4. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures;Zhao;Sci. Adv.,2019

5. Towards large-scale graphene transfer;Qing;Nanoscale,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3