Innovative Post-Processing for Complex Geometries and Inner Parts of 3D-Printed AlSi10Mg Devices

Author:

Calvet Martí1ORCID,Domènech Anna1ORCID,Vilaró Sergi1,Meseguer Toni1,Bautista Lorenzo1

Affiliation:

1. Surface Chemistry Area, Applied Chemistry & Materials Department, Leitat Technological Center, 08225 Terrassa, Barcelona, Spain

Abstract

A new technology consisting of new and sustainable chemical polishing treatment for aluminum components with complex shapes, such as heat exchangers, manifolds, busbars, aerospace devices, etc., manufactured by Additive Manufacturing (AM) technologies is described in this paper. This technology will contribute to the development of a more efficient manufacturing process driven by AM, reinforcing the main idea of AM, which is based on reducing the amount of material and achieving cost savings through smart and improved designs. The present study shows a significant reduction in the surface roughness of consolidated AlSi10Mg metal parts manufactured by the SLM technique after carrying out the new chemical polishing post-process investigated in this work. Roughness values have been measured by mechanical and optical profilometry. The results obtained demonstrate the effectiveness of the chemical polishing, decreasing the roughness by up to 40%, being a reproducible and repeatable post-process. The presence of smut as solid residues on such types of chemical treatments has been also analyzed with XRF and ICP-MS techniques. The results obtained show that Si and Mg precipitates are removed from the metal surface at the last step of the investigated post-process. The percentages of the elements decrease from 25.0% to 8.09% Si and from 0.86% to 0.42% Mg, achieving the alloy smut-free composition on the metal surface. Tensile strength measurements have shown that the post-process described not only maintains the mechanical properties of the bulk material but, in comparison with non-post-processed parts, a slight improvement is observed with respect to the initial values, Young modulus (61.1 GPa to final 62.2 GPa), yield strength (from 236.8 to 246.7 MPa), and tensile strength (from 371.9 to 382.5 MPa) is observed, suggesting that the post-process has positive impact on the printed metal part.

Funder

Ministry of Science and Innovation of Spain

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3