Comparison of Membrane-Based Treatment Methods for the Removal of Micro-Pollutants from Reclaimed Water

Author:

Devaisy Sukanyah,Kandasamy Jaya,Nguyen Tien Vinh,Johir Md Abu Hasan,Ratnaweera Harsha,Vigneswaran SaravanamuthuORCID

Abstract

Dual membrane hybrid systems generally produce reclaimed water for non-potable uses by blending microfiltered biologically treated sewage effluent (BTSE) and reverse osmosis (RO) permeate. This reclaimed water is found to contain a significant amount of micro-pollutants, which possibly cause toxicity effects to aquatic organisms and plants when exposed to it. Therefore, removing such pollutants from the reclaimed water before reaching the community is highly emphasized nowadays. The currently used treatment of the RO treatment of microfiltered BTSE is energy intensive and not cost effective. This paper focuses on less costly and efficient membrane-based hybrid treatment systems such as the microfiltration-adsorption (MF-GAC) hybrid system, Nano filter (NF) and RO in the removal of micro-pollutants from the microfiltered BTSE. Both the MF-GAC hybrid system and NF (with NTR 729HF membrane) removed 70 to 95% of micropollutants from microfiltered BTSE. The removal depends on the hydrophobicity, charge, and size of the micropollutants. RO was excellent in removing more than 90% of pollutants, while MF was inefficient, as the latter primarily depends on the size exclusion mechanism. Based on the finding, it is suggested to treat only a portion of microfiltered BTSE through the MF-GAC or NF membrane before blending with RO permeate to enhance the removal of micro-pollutants from reclaimed water. The development of sustainable hybrid systems for the removal of all micropollutants of different chemical and physical properties is the key for the water reclamation.

Funder

Water Harmony, Water JPI-2018: Closing the Water Cycle Gap—Sustainable Management of Water Resources

Norwegian Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3