Using Satellite Imagery to Improve Local Pollution Models for High-Voltage Transmission Lines and Insulators

Author:

Krammer Peter,Kvassay Marcel,Mojžiš JánORCID,Kenyeres MartinORCID,Očkay MilošORCID,Hluchý Ladislav,Pavlov Ľuboš,Skurčák Ľuboš

Abstract

This paper addresses the regression modeling of local environmental pollution levels for electric power industry needs, which is fundamental for the proper design and maintenance of high-voltage transmission lines and insulators in order to prevent various hazards, such as accidental flashovers due to pollution and the resultant power outages. The primary goal of our study was to increase the precision of regression models for this application area by exploiting additional input attributes extracted from satellite imagery and adjusting the modeling methodology. Given that thousands of different attributes can be extracted from satellite images, of which only a few are likely to contain useful information, we also explored suitable feature selection procedures. We show that a suitable combination of attribute selection methods (relief, FSRF-Test, and forward selection), regression models (random forest models and M5P regression trees), and modeling methodology (estimating field-measured values of target variables rather than their upper bounds) can significantly increase the total modeling accuracy, measured by the correlation between the estimated and the true values of target variables. Specifically, the accuracies of our regression models dramatically rose from 0.12–0.23 to 0.40–0.64, while their relative absolute errors were conversely reduced (e.g., from 1.04 to 0.764 for the best model).

Funder

VEGA Slovakia

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3