Abstract
Drug-Named Entity Recognition (DNER) for biomedical literature is a fundamental facilitator of Information Extraction. For this reason, the DDIExtraction2011 (DDI2011) and DDIExtraction2013 (DDI2013) challenge introduced one task aiming at recognition of drug names. State-of-the-art DNER approaches heavily rely on hand-engineered features and domain-specific knowledge which are difficult to collect and define. Therefore, we offer an automatic exploring words and characters level features approach: a recurrent neural network using bidirectional long short-term memory (LSTM) with Conditional Random Fields decoding (LSTM-CRF). Two kinds of word representations are used in this work: word embedding, which is trained from a large amount of text, and character-based representation, which can capture orthographic feature of words. Experimental results on the DDI2011 and DDI2013 dataset show the effect of the proposed LSTM-CRF method. Our method outperforms the best system in the DDI2013 challenge.
Funder
National High Technology Research and Development Program of China
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献