Analysis of Energy Loss Characteristics in an Axial-Flow Reactor Coolant Pump Based on Entropy Production Theory

Author:

Li Zhong1,Sun Yanna1,Gong Weifeng2,Ni Dan1ORCID,Gao Bo1

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China

2. Shanghai Marine Equipment Research Institute (SMERI), Shanghai 200031, China

Abstract

As the critical component of a nuclear power plant (NPP), the reactor coolant pump (RCP) will suffer energy losses during operation, which can lead to a series of safety issues and adversely affect the efficiency and stability of the NPP. In this study, the SST k-ω turbulence model is utilized to simulate the internal flow field of an axial-flow reactor coolant pump (RCP) under operating conditions of 0.8QN to 1.2QN. Combined with entropy production theory, the distribution characteristics and hydraulic causes of energy loss within different regions of the RCP are revealed. The research findings are as follows: the total entropy production in the RCP first decreases and then increases during operation; with turbulent entropy production consistently accounting for over 70% of the total, and direct entropy production accounting for less than 10%. The impeller and annular casing are always the main components responsible for hydraulic losses within the pump. As the flow rate increases, the total entropy production in the impeller initially decreases and then increases, accounting for between 34.3% and 51% of the total; with energy losses mainly concentrated on the suction side of the impeller blades. The total entropy production in the annular casing gradually increases under operating conditions ranging from 0.8QN to 1.2QN, accounting for between 20.4% and 50.3% of the total. Rotor-stator interaction (RSI), backflow, and flow separation near the volute tongue are significant causes of energy losses within the annular casing. Optimizing the geometric parameters of the impeller and annular casing is an effective way to reduce flow losses in axial-flow RCPs. The research results can provide a reference for the development of optimization techniques for RCPs.

Funder

National Natural Science Foundation of China

China Post-doctoral Science Foundation

Project supported by Jiangsu postdoctoral research fund

the Fundamental Science Research Project of Jiangsu Higher Education Institutions

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3