Affiliation:
1. Faculty of Navigation, Maritime University of Szczecin, 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
Abstract
As global maritime cargo transportation intensifies, managing CO2 emissions from ships becomes increasingly crucial. This article explores optimizing bulk carrier fleets for transporting polymetallic nodules (PMNs) from the Clarion-Clipperton Zone (CCZ) to reduce CO2 emissions. Our analysis shows that larger bulk carriers, despite greater drifting forces from environmental conditions, emit less CO2 over the entire transport mission, including loading and transit. Deploying large ships in global maritime trade could significantly reduce CO2 emissions. This study also introduces a novel artificial neural network (ANN) model to estimate drifting forces during loading operations and proposes a new method for estimating CO2 emissions, considering environmental conditions and ship seakeeping properties. These findings highlight the importance of fleet size optimization and effective operational planning in achieving environmental sustainability in maritime transport.