Finite Element Analysis of the Mechanical Response for Cylindrical Lithium-Ion Batteries with the Double-Layer Windings

Author:

Ahn Young Ju1ORCID

Affiliation:

1. Department of Mechanical and Design Engineering, Hongik University, Sejong-ro 2639, Jochiwon-eup, Sejong 339-701, Republic of Korea

Abstract

The plastic properties for the jellyroll of lithium-ion batteries showed different behavior in tension and compression, showing the yield strength in compression being several times higher than in tension. The crushable foam models were widely used to predict the mechanical responses to compressive loadings. However, since the compressive characteristic is dominant in this model, it is difficult to identify distributions of the yield strength in tension. In this study, a simplified jellyroll model consisting of double-layer windings was devised to reflect different plastic characteristics of a jellyroll, and the proposed model was applied to an 18650 cylindrical battery under compressive loading conditions. One winding adopted the crushable foam model for representing the compressive plastic behavior, and the other winding adopted the elastoplastic models for tracking the tensile plastic behavior. The material parameters in the crushable foam model were calibrated by comparing the simulated force–displacement curve with the experimental one for the case where the cell was crushed between two plates when the punch was displaced by 7 mm. A specific cut-off value (10 MPa) was assigned to a yield stress limit in the elastoplastic model. Further, the computational model was validated with two more loading cases, a cylindrical rod indentation and a spherical punch indentation, as the punch was displaced by 6.3 mm and 6.5 mm, respectively. For three loading cases, deformed configurations and plastic strain distributions were investigated by finite element analysis. It was found that the proposed model clearly provides the plastic behavior both in compression and tension. For the crush simulation, the maximum compressive stress approached 222 MPa in the middle of the jellyroll, and the maximum effective plastic strain approached 60% in the middle of the layered roll. For indentation with the cylindrical and the spherical punch, the maximum effective plastic strain approached 52% and 277% in the layered roll, respectively. The local crack or location of a short circuit could be predicted from the maximum effective plastic strain.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3