Automatic Hybrid Access Control in SCADA-Enabled IIoT Networks Using Machine Learning

Author:

Usman Muhammad1ORCID,Sarfraz Muhammad Shahzad1,Habib Usman2ORCID,Aftab Muhammad Umar1ORCID,Javed Saleha3ORCID

Affiliation:

1. Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Chiniot-Faisalabad Campus, Chiniot 35400, Pakistan

2. AI and Data Science Department, FAST School of Computing, National University of Computer and Emerging Sciences, Islamabad, Islamabad Campus, Islamabad 44000, Pakistan

3. Machine Learning Group, SRT, Lulea Technical University, 97187 Lulea, Sweden

Abstract

The recent advancements in the Internet of Things have made it converge towards critical infrastructure automation, opening a new paradigm referred to as the Industrial Internet of Things (IIoT). In the IIoT, different connected devices can send huge amounts of data to other devices back and forth for a better decision-making process. In such use cases, the role of supervisory control and data acquisition (SCADA) has been studied by many researchers in recent years for robust supervisory control management. Nevertheless, for better sustainability of these applications, reliable data exchange is crucial in this domain. To ensure the privacy and integrity of the data shared between the connected devices, access control can be used as the front-line security mechanism for these systems. However, the role engineering and assignment propagation in access control is still a tedious process as its manually performed by network administrators. In this study, we explored the potential of supervised machine learning to automate role engineering for fine-grained access control in Industrial Internet of Things (IIoT) settings. We propose a mapping framework to employ a fine-tuned multilayer feedforward artificial neural network (ANN) and extreme learning machine (ELM) for role engineering in the SCADA-enabled IIoT environment to ensure privacy and user access rights to resources. For the application of machine learning, a thorough comparison between these two algorithms is also presented in terms of their effectiveness and performance. Extensive experiments demonstrated the significant performance of the proposed scheme, which is promising for future research to automate the role assignment in the IIoT domain.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3