Coverage and Lifetime Optimization by Self-Optimizing Sensor Networks

Author:

Seredyński Franciszek1ORCID,Kulpa Tomasz1ORCID,Hoffmann Rolf2ORCID,Désérable Dominique3ORCID

Affiliation:

1. Institute of Computer Science, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland

2. Department of Computer Science, Technische Universität Darmstadt, 64289 Darmstadt, Germany

3. Institut National des Sciences Appliquées, 35700 Rennes, France

Abstract

We propose an approach to self-optimizing wireless sensor networks (WSNs) which are able to find, in a fully distributed way, a solution to a coverage and lifetime optimization problem. The proposed approach is based on three components: (a) a multi-agent, social-like interpreted system, where the modeling of agents, discrete space, and time is provided by a 2-dimensional second-order cellular automata, (b) the interaction between agents is described in terms of the spatial prisoner’s dilemma game, and (c) a local evolutionary mechanism of competition between agents exists. Nodes of a WSN graph created for a given deployment of WSN in the monitored area are considered agents of a multi-agent system that collectively make decisions to turn on or turn off their batteries. Agents are controlled by cellular automata (CA)-based players participating in a variant of the spatial prisoner’s dilemma iterated game. We propose for players participating in this game a local payoff function that incorporates issues of area coverage and sensors energy spending. Rewards obtained by agent players depend not only on their personal decisions but also on their neighbor’s decisions. Agents act in such a way to maximize their own rewards, which results in achieving by them a solution corresponding to the Nash equilibrium point. We show that the system is self-optimizing, i.e., can optimize in a distributed way global criteria related to WSN and not known for agents, provide a balance between requested coverage and spending energy, and result in expanding the WSN lifetime. The solutions proposed by the multi-agent system fulfill the Pareto optimality principles, and the desired quality of solutions can be controlled by user-defined parameters. The proposed approach is validated by a number of experimental results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3