The Effect of Monsoon Rainfall Patterns on Epilithic Diatom Communities in the Hantangang River, Korea

Author:

Cho In-Hwan,Kim Ha-Kyung,Lee Min-Hyuk,Kim Yong-Jae,Lee Hyuk,Kim Baik-HoORCID

Abstract

Most of Korea’s rivers and lakes are subject to physico-chemical disturbances, such as increased water quantity and flow rates, and influx of nitrogen and phosphorus, due to intense rainfall concentrated in the Asian monsoon season. To examine the influence of rainfall on epilithic diatom communities, we measured the diatom distribution and river water quality at 29 sites along the main-stream and tributaries of the Hantangang River, Korea, in the period of 2012–2015. Water quality parameters in the polluted sites had improved following rainfall, but the response of dominant species varied with water quality; the dominant species Nitzschia fonticola decreased in abundance regardless of sampling sites, and the abundance of Achnanthidium minutissimum in the clean sites and Nitzschia palea in the polluted sites increased after rainfall, respectively. The community dynamic index (CDI) showed that the most obvious shift of epilithic diatom community occurred in the mid-polluted sites in 2013 with the highest rainfall. This suggest that the effect of rainfalls on the epilithic diatom community is dependent on various parameters, such as the magnitude of rainfall, water quality and its biotic compositions of diatom communities, but it also indicates that improving the water quality of rivers is important to promote the resilience of diatom communities to extremes of precipitation. Further investigation is needed to generalize the effects of monsoon rainfall on the epilithic diatom communities, considering rivers with different environmental characteristics.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference60 articles.

1. Numerical simulations of the three-dimensional land and sea breezes under synoptic flows over South Korea;Kim;APJAS,1992

2. Analysis of the Korean Heavy Rainfall Features in Summer 1998;Yun;J. Korean Meteorol. Soc.,2001

3. Recent changes in the level of Lake Naivasha, Kenya, as an indicator of equatorial westerlies over East Africa

4. Information for the Sustainable Management of Shallow Lakes: Lake Naivasha, Kenya;Johnson,1998

5. Primary production in Lake Naivasha, Kenya

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3