Abstract
One of the main assumptions of the standard electrokinetic model is that ions behave as point-like entities. In a previous work (López-García, et al., 2015) we removed this assumption and analyzed the influence of finite ionic size on the dielectric and electrokinetic properties of colloidal suspensions using both the Bikerman and the Carnahan–Starling equations for the steric interactions. It was shown that these interactions improved upon the standard model predictions so that the surface potential, electrophoretic mobility, and the conductivity and permittivity increment values were increased. In the present study, we extend our preceding works to systems made of three or more ionic species with different ionic sizes. Under these conditions, the Bikerman and Carnahan–Starling expressions cease to be valid since they were deduced for single-size spheres. Fortunately, the Carnahan–Starling expression has been extended to mixtures of spheres of unequal size, namely the “Boublik–Mansoori–Carnahan–Starling–Leland” (BMCSL) equation of state, making it possible to analyze the most general case. It is shown that the BMCSL expression leads to results that differ qualitatively and quantitatively from the standard electrokinetic model.
Funder
Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Reference29 articles.
1. Electrokinetic Phenomena;Dukhin,1974
2. Zeta Potential in Colloid Science. Principles and Applications;Hunter,1981
3. Colloidal Dispersions;Russell,1995
4. Fundamentals of Colloid and Interface Science, Vol. II: Solid/Liquid Interfaces;Lyklema,1995
5. Ion size effects on the dielectric and electrokinetic properties in aqueous colloidal suspensions
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献