Broad-Leaved and Coniferous Forest Classification in Google Earth Engine Using Sentinel Imagery

Author:

Kaplan GordanaORCID

Abstract

Forest structures knowledge is fundamental to understanding, managing, and preserving the biodiversity of forests. With the well-established need within the remote sensing community for better understanding of canopy structure, in this paper, the effectiveness of Sentinel-2 imagery for broad-leaved and coniferous forest classification within the Google Earth Engine (GEE) platform has been assessed. Here, we used Sentinel-2 image collection from the summer period over North Macedonia, when the canopy is fully developed. For the sample collection of the coniferous areas and the accuracy assessment of the classification, we used imagery from the spring period, when the broad-leaved forests are in the early green stage. A Support Vector Machine (SVM) classifier has been used for discriminating forest cover groups, namely, broadleaved and coniferous forests. According to the results, more than 90% of the canopy in North Macedonia is broad-leaved, while less than 10% is conifers. The results in this study show that, with the use of GEE, Sentinel-2 data alone can be effectively used to obtain rapid and accurate mapping of main forest types (conifers-broadleaved) with a fine resolution.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3