Extreme Hydrometeorological Conditions of Sediment Waves’ Formation and Migration in Peter the Great Bay (The Sea of Japan)

Author:

Samchenko Aleksandr1ORCID,Dolgikh Grigory1ORCID,Yaroshchuk Igor1,Kosheleva Alexandra1ORCID,Pivovarov Aleksandr1,Novotryasov Vadim1ORCID

Affiliation:

1. V.I. Il’ichev Pacific Oceanological Institute, Russian Academy of Sciences, 43 Baltiyskaya Str., Vladivostok 690041, Russia

Abstract

New data were obtained on the formation mechanisms of relief sediment waves (SWs) in Peter the Great Bay of the Sea of Japan. From the studies, we can assume that the sediment waves in the bay originate from two types of turbidity (TB) currents: (1) fine-dispersed TB currents caused by disintegrating internal waves and entrained by the Primorsky current along the shelf through SWs troughs; (2) fine- and coarse-grained TB currents, formed and entrained by the Primorsky current, intensified by the typhoons. This work presents the geological structure of the shelf area containing SWs. We established that the area of SWs location is on the border of change in facies conditions of sediment bedding in the bay. The transition from the inner shelf facies to the outer shelf facies occurs at a depth of 50–60 m. We analyzed the space variability of temperature and sound speed fields peculiar to the region on the results of hydrological CTD measurements and long-term measurements with moored vertical thermostrings. In the course of measurements, seven typhoons during their passage off the Primorye coast of the Russian Federation were registered. We found a significant change in the hydrological situation in the bay under the influence of extreme external factors. Under calm meteorological conditions, up to three mild thermoclines were observed in the bay, located at depths of 8–15 m, 30–35 m, and 45–60 m. During the passage of typhoons, they combined into one powerful thermocline at a depth of approximately 50–60 m, and in some cases, a high-gradient thermocline formed at the depths of 30–40 m (about 12–15 °C per 10 m of depth). The high-gradient layer significantly increases the amplitude and strength of internal gravity waves, thereby increasing the speed of currents in the water media. We should note that this period of transformation of the hydrological profile on the shelf under the influence of typhoons covers the period from August to October-November. We established that in the SWs location area, firstly, the process of internal waves disintegration intensifies in the autumn season, resulting in the formation of the waves with lengths close to the SWs horizontal scales (SWs wavelengths); secondly, under the influence of the typhoons entering the Sea of Japan, the kinetic energy of the shelf branch of the Primorsky current increases. In this case, it acts as a source of TB currents, including medium- and coarse-grained sedimentary material that forms SWs.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3