Encapsulation of Lovastatin in Zein Nanoparticles Exhibits Enhanced Apoptotic Activity in HepG2 Cells

Author:

Alhakamy Nabil A.ORCID,Ahmed Osama A.A.ORCID,Aldawsari Hibah M.,Alfaifi Mohammad Y.ORCID,Eid Basma G.,Abdel-Naim Ashraf B.ORCID,Fahmy Usama A.

Abstract

Research on statins highlights their potent cytotoxicity against cancer cells and their potential for cancer prevention. The aim of the current study was to examine whether loading lovastatin (LVS) in zein (ZN) nanoparticles (NPs) would potentiate the anti-proliferative effects of LVS and enhance its proliferation-inhibiting activity in HepG2 cells. LVS-ZN NPs were prepared and showed excellent characteristics, with respect to their particle size, zeta potential, diffusion, and entrapment efficiency. In addition, they showed the most potent anti-proliferative activity against HepG2 cells. ZN alone showed an observable anti-proliferative that was significantly higher than that of raw LVS. Furthermore, LVS uptake by HepG2 cells was greatly enhanced by the formulation in ZN. A cell cycle analysis indicated that LVS induced a significant cell accumulation in the G2/M and pre-G phases. In this regard, the LVS–ZN NPs exhibited the highest potency. The accumulation in the pre-G phase indicated an enhanced pro-apoptotic activity of the prepared formula. The cells incubated with the LVS-ZN NPs showed the highest percentage of cells with annexin-V positive staining. In addition, the same incubations showed the highest content of caspase-3 enzyme in comparison to raw LVS or ZN. Thus, the loading of LVS in ZN nanoparticles enhances its anti-proliferative activity against HepG2 cells, which is attributed, at least partly, to the enhanced cellular uptake and the induction of apoptosis.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3