GABA-Alleviated Oxidative Injury Induced by Salinity, Osmotic Stress and their Combination by Regulating Cellular and Molecular Signals in Rice

Author:

Sheteiwy Mohamed S.,Shao HongboORCID,Qi Weicong,Hamoud Yousef Alhaj,Shaghaleh Hiba,Khan Nasr Ullah,Yang Ruiping,Tang Boping

Abstract

This study was conducted in order to determine the effect of priming with γ-aminobutyric acid (GABA) at 0.5 mM on rice (Oryza sativa L.) seed germination under osmotic stress (OS) induced by polyethylene glycol (30 g/L PEG 6000); and salinity stress (S, 150 mM NaCl) and their combination (OS+S). Priming with GABA significantly alleviated the detrimental effects of OS, S and OS+S on seed germination and seedling growth. The photosynthetic system and water relation parameters were improved by GABA under stress. Priming treatment significantly increased the GABA content, sugars, protein, starch and glutathione reductase. GABA priming significantly reduced Na+ concentrations, proline, free radical and malonaldehyde and also significantly increased K+ concentration under the stress condition. Additionally, the activities of antioxidant enzymes, phenolic metabolism-related enzymes, detoxification-related enzymes and their transcription levels were improved by GABA priming under stress. In the GABA primed-plants, salinity stress alone resulted in an obvious increase in the expression level of Calcineurin B-like Protein-interacting protein Kinases (CIPKs) genes such as OsCIPK01, OsCIPK03, OsCIPK08 and OsCIPK15, and osmotic stress alone resulted in obvious increase in the expression of OsCIPK02, OsCIPK07 and OsCIPK09; and OS+S resulted in a significant up-regulation of OsCIPK12 and OsCIPK17. The results showed that salinity, osmotic stresses and their combination induced changes in cell ultra-morphology and cell cycle progression resulting in prolonged cell cycle development duration and inhibitory effects on rice seedlings growth. Hence, our findings suggested that the high tolerance to OS+S is closely associated with the capability of GABA priming to control the reactive oxygen species (ROS) level by inducing antioxidant enzymes, secondary metabolism and their transcription level. This knowledge provides new evidence for better understanding molecular mechanisms of GABA-regulating salinity and osmotic-combined stress tolerance during rice seed germination and development.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3