Calcium Polyphosphate Nanoparticles Act as an Effective Inorganic Phosphate Source during Osteogenic Differentiation of Human Mesenchymal Stem Cells

Author:

Phelipe Hatt LuanORCID,Thompson KeithORCID,Müller Werner E. G.ORCID,Stoddart Martin JamesORCID,Armiento Angela RitaORCID

Abstract

The ability of bone-marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to differentiate into osteoblasts makes them the ideal candidate for cell-based therapies targeting bone-diseases. Polyphosphate (polyP) is increasingly being studied as a potential inorganic source of phosphate for extracellular matrix mineralisation. The aim of this study is to investigate whether polyP can effectively be used as a phosphate source during the in vitro osteogenic differentiation of human BM-MSCs. Human BM-MSCs are cultivated under osteogenic conditions for 28 days with phosphate provided in the form of organic β-glycerolphosphate (BGP) or calcium-polyP nanoparticles (polyP-NP). Mineralisation is demonstrated using Alizarin red staining, cellular ATP content, and free phosphate levels are measured in both the cells and the medium. The effects of BGP or polyP-NP on alkaline phosphatase (ALP) activity and gene expression of a range of osteogenic-related markers are also assessed. PolyP-NP supplementation displays comparable effects to the classical BGP-containing osteogenic media in terms of mineralisation, ALP activity and expression of osteogenesis-associated genes. This study shows that polyP-NP act as an effective source of phosphate during mineralisation of BM-MSC. These results open new possibilities with BM-MSC-based approaches for bone repair to be achieved through doping of conventional biomaterials with polyP-NP.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3