Neutrophil Maturation and Survival Is Controlled by IFN-Dependent Regulation of NAMPT Signaling

Author:

Siakaeva Elena,Pylaeva EkaterinaORCID,Spyra Ilona,Bordbari ShararehORCID,Höing Benedikt,Kürten Cornelius,Lang Stephan,Jablonska JadwigaORCID

Abstract

Granulocyte-colony stimulating factor (G-CSF)/nicotinamide phosphoribosyltransferase (NAMPT) signaling has been shown to be crucial for the modulation of neutrophil development and functionality. As this signaling pathway is significantly suppressed by type I interferons (IFNs), we aimed to study how the regulation of neutrophil differentiation and phenotype is altered in IFN-deficient mice during granulopoiesis. The composition of bone marrow granulocyte progenitors and their Nampt expression were assessed in bone marrow of type I IFN receptor knockout (Ifnar1-/-) mice and compared to wild-type animals. The impact of NAMPT inhibition on the proliferation, survival, and differentiation of murine bone marrow progenitors, as well as of murine 32D and human HL-60 neutrophil-like cell lines, was estimated. The progressive increase of Nampt expression during neutrophil progenitor maturation could be observed, and it was more prominent in IFN-deficient animals. Altered composition of bone marrow progenitors in these mice correlated with the dysregulation of apoptosis and altered differentiation of these cells. We observed that NAMPT is vitally important for survival of early progenitors, while at later stages it delays the differentiation of neutrophils, with moderate effect on their survival. This study shows that IFN-deficiency leads to the elevated NAMPT expression in the bone marrow, which in turn modulates neutrophil development and differentiation, even in the absence of tumor-derived stimuli.

Funder

Deutsche Krebshilfe

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3