Nitrogen-Doped Core-Shell Mesoporous Carbonaceous Nanospheres for Effective Removal of Fluorine in Capacitive Deionization

Author:

Zhao Yubo1,Li Kexun2,Sheng Bangsong3,Chen Feiyong14,Song Yang14

Affiliation:

1. Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China

2. College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China

3. The Second Construction Limited Company of China Construction Eighth Engineering Division, Jinan 250011, China

4. Huzhou Nanxun District Jianda Ecological Environment Innovation Center, Shandong Jianzhu University, Jinan 250101, China

Abstract

Fluorine pollution of wastewater is a global environmental problem. Capacitive deionization has unique advantages in the defluorination of fluorine-containing wastewater; however, the low electrosorption capacity significantly restricts its further development. To overcome this limitation, nitrogen-doped core-shell mesoporous carbonaceous nanospheres (NMCS) were developed in this study based on structural optimization and polarity enhancement engineering. The maximal electrosorption capacity of NMCS for fluorine reached 13.34 mg g−1, which was 24% higher than that of the undoped counterpart. NMCS also indicated excellent repeatability evidenced by little decrease of electrosorption capacity after 10 adsorption-regeneration cycles. According to material and electrochemical measurements, the doping of nitrogen into NMCS resulted in the improvement of physicochemical properties such as conductivity and wettability, the amelioration of pore structure and the transformation of morphology from yolk-shell to core-shell structure. It not only facilitated ion transportation but also improved the available adsorption sites, and thus led to enhancement of the defluorination performance of NMCS. The above results demonstrated that NMCS would be an excellent electrode material for high-capacity defluorination in CDI systems.

Funder

Shandong Provincial Natural Science Foundation

Shandong Postdoctora1 Science Foundation

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3