Effect of Urea-Calcium Sulfate Cocrystal Nitrogen Fertilizer on Sorghum Productivity and Soil N2O Emissions

Author:

Bista Prakriti1,Eisa Mohamed2ORCID,Ragauskaitė Dovilė2,Sapkota Sundar3,Baltrusaitis Jonas2ORCID,Ghimire Rajan13ORCID

Affiliation:

1. Agricultural Science Center, New Mexico State University, 2346 State Road 288, Clovis, NM 88101, USA

2. Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA

3. Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003, USA

Abstract

Urea cocrystal materials have recently emerged as high nitrogen (N) content fertilizers with low solubility capable of minimizing N loss and improving their use efficiency. However, their effects on crop productivity and N2O emissions remain underexplored. A greenhouse study was designed to evaluate sorghum (Sorghum bicolor (L.) Moench) yield, N uptake, and N2O emissions under six N treatments: C0 (without fertilizer), UR100 (urea), UC100 (CaSO4⋅4urea cocrystal) at 150 kg N ha−1, and CaSO4⋅4urea cocrystal at 40%, 70%, and 130% of 150 kg N ha−1 (UC40, UC70, and UC130, respectively). The results demonstrated that UR100, UC100, and UC130 had 51.4%, 87.5%, and 91.5% greater grain yields than the control. The soil nitrate and sulfur concentration, N uptake, and use efficiency were the greatest in UC130, while UR100 had significantly greater N2O loss within the first week of N application than the control and all the urea cocrystal treatments. UC130 minimized the rapid N loss in the environment as N2O emissions shortly after fertilizer application. Results of this study suggest the positive role of urea cocrystal in providing a balanced N supply and increasing crop yield in a more environmentally friendly way than urea alone. It could be good alternative fertilizer to minimize N loss as N2O emissions and significantly increase the N use efficiency in sorghum.

Funder

USDA National Institute of Food and Agriculture

USDA Natural Resources Conservation Services

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference56 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3