PFC: A Novel Perceptual Features-Based Framework for Time Series Classification

Author:

Wu ShaocongORCID,Wang XiaolongORCID,Liang MengxiaORCID,Wu Dingming

Abstract

Time series classification (TSC) is a significant problem in data mining with several applications in different domains. Mining different distinguishing features is the primary method. One promising method is algorithms based on the morphological structure of time series, which are interpretable and accurate. However, existing structural feature-based algorithms, such as time series forest (TSF) and shapelet traverse, all features through many random combinations, which means that a lot of training time and computing resources are required to filter meaningless features, important distinguishing information will be ignored. To overcome this problem, in this paper, we propose a perceptual features-based framework for TSC. We are inspired by how humans observe time series and realize that there are usually only a few essential points that need to be remembered for a time series. Although the complex time series has a lot of details, a small number of data points is enough to describe the shape of the entire sample. First, we use the improved perceptually important points (PIPs) to extract key points and use them as the basis for time series segmentation to obtain a combination of interval-level and point-level features. Secondly, we propose a framework to explore the effects of perceptual structural features combined with decision trees (DT), random forests (RF), and gradient boosting decision trees (GBDT) on TSC. The experimental results on the UCR datasets show that our work has achieved leading accuracy, which is instructive for follow-up research.

Funder

Technology and Innovation Commission of Shenzhen Munici-pality

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3