Robust and Accurate Hand–Eye Calibration Method Based on Schur Matric Decomposition

Author:

Liu ,Wu ,Li

Abstract

To improve the accuracy and robustness of hand–eye calibration, a hand–eye calibration method based on Schur matric decomposition is proposed in this paper. The accuracy of these methods strongly depends on the quality of observation data. Therefore, preprocessing observation data is essential. As with traditional two-step hand–eye calibration methods, we first solve the rotation parameters and then the translation vector can be immediately determined. A general solution was obtained from one observation through Schur matric decomposition and then the degrees of freedom were decreased from three to two. Observation data preprocessing is one of the basic unresolved problems with hand–eye calibration methods. A discriminant equation to delete outliers was deduced based on Schur matric decomposition. Finally, the basic problem of observation data preprocessing was solved using outlier detection, which significantly improved robustness. The proposed method was validated by both simulations and experiments. The results show that the prediction error of rotation and translation was 0.06 arcmin and 1.01 mm respectively, and the proposed method performed much better in outlier detection. A minimal configuration for the unique solution was proven from a new perspective.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feasibility of the Hand–Eye Algorithm in Sensor-to-Sensor Calibration of Wearable Devices;IEEE Sensors Journal;2024-03-01

2. Automated Recursive Hand-Eye Calibration Employing 3D Point Cloud Registration;2024 IEEE 18th International Conference on Advanced Motion Control (AMC);2024-02-28

3. User Feedback and Sample Weighting for Ill-Conditioned Hand-Eye Calibration;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

4. Hand-eye calibration method and machine vision research based on sensor network;Journal of Computational Methods in Sciences and Engineering;2023-08-18

5. Accuracy of position and orientation for consumer-grade tracking sensors with Hand-Eye Calibration;2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA);2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3