Variations in the Phytoremediation Efficiency of Metal-polluted Water with Salvinia biloba: Prospects and Toxicological Impacts

Author:

Emiliani Julia,Llatance Oyarce Wendi G.,Bergara C. Daniela,Salvatierra Lucas M.ORCID,Novo Luís A. B.ORCID,Pérez Leonardo M.ORCID

Abstract

The occurrence of heavy metals in industrial wastewater is unanimously considered a major concern since these pollutants cannot be chemically or biologically degraded and therefore have long residence times. Phytoremediation is one of the most widespread biotechnological applications worldwide, which consists in the use of plants to adsorb or accumulate a broad range of inorganic and organic contaminants from water, air, and soil. To improve the cost-effectiveness and sustainability of phytoremediation-based wastewater treatment systems, it is essential to use plants that are not only efficient in pollutants removal, but also abundant and easily accessible at the target site, requiring no-special culture conditions. In this study, we have evaluated the capacity of naturally-occurring aquatic macrophytes of the genus Salvinia (classified as Salvinia biloba) to phytoremediate water artificially contaminated with cadmium (Cd), copper (Cu), lead (Pb), or zinc (Zn) at equal molar concentrations (50 ± 2 and 100 ± 1 µM), during 48 h. Additionally, photosynthetic and antioxidant pigments (carotenoids, chlorophylls, anthocyanins, and flavonoids), and soluble carbohydrate content was also measured in floating leaves of Salvinia specimens to appraise heavy metals phytotoxicity. Elemental analyses to plant tissue indicate that S. biloba was able to bioconcentrate all four metals analyzed, albeit with different degrees of affinity. In addition, the mechanisms of uptake and detoxification were dissimilar for each ion, resulting in greater removal of Cu and Pb (≥96%, at both concentrations), in comparison to Cd (79 ± 4% and 56 ± 2% for 50 ± 2 and 100 ± 1 µM, respectively) and Zn (77 ± 5% and 70 ± 4% for 50 ± 2 and 100 ± 1 µM, respectively). Accordingly, the assessment of the selected physiological parameters in floating leaves suggests that different response mechanisms are triggered by each metal in S. biloba to counteract the corresponding toxicological stress.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3