Knowledge Distillation-Based GPS Spoofing Detection for Small UAV

Author:

Ren Yingying1ORCID,Restivo Ryan D.2,Tan Wenkai3,Wang Jian4ORCID,Liu Yongxin5ORCID,Jiang Bin6ORCID,Wang Huihui2ORCID,Song Houbing3ORCID

Affiliation:

1. School of Computer, Electronic and Information, Guangxi University, Nanning 530004, China

2. Department of Cybersecurity, St. Bonaventure University, St. Bonaventure, NY 14778, USA

3. Department of Information Systems, University of Maryland, Baltimore County, MD 21250, USA

4. Department of Computer Science, The University of Tennessee at Martin, Martin, TN 38238, USA

5. Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA

6. Department of Communication Engineering, College of Oceanography and Space Informatics, China University of Petroleum, Qingdao 266580, China

Abstract

As a core component of small unmanned aerial vehicles (UAVs), GPS is playing a critical role in providing localization for UAV navigation. UAVs are an important factor in the large-scale deployment of the Internet of Things (IoT) and cyber–physical systems (CPS). However, GPS is vulnerable to spoofing attacks that can mislead a UAV to fly into a sensitive area and threaten public safety and private security. The conventional spoofing detection methods need too much overhead, which stops efficient detection from working in a computation-constrained UAV and provides an efficient response to attacks. In this paper, we propose a novel approach to obtain a lightweight detection model in the UAV system so that GPS spoofing attacks can be detected from a long distance. With long-short term memory (LSTM), we propose a lightweight detection model on the ground control stations, and then we distill it into a compact size that is able to run in the control system of the UAV with knowledge distillation. The experimental results show that our lightweight detection algorithm runs in UAV systems reliably and can achieve good performance in GPS spoofing detection.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3