User Association Performance Trade-Offs in Integrated RF/mmWave/THz Communications

Author:

Hassan Noha1,Fernando Xavier1ORCID,Woungang Isaac2,Anpalagan Alagan1

Affiliation:

1. Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, OT 66777, Canada

2. Department of Computer Science, Toronto Metropolitan University, Toronto, OT 66777, Canada

Abstract

In combination with the expected traffic avalanche foreseen for the next decade, solutions supporting energy-efficient, scalable and flexible network operations are essential. Considering the myriad of user case requirements, THz and mmW bands will play key roles in 6G networks. While mmW is known for short-rate LOS connections, THz transmission is subjected to even severe propagation losses, resulting in very short-range connections. In this context, we evaluate a dynamic multi-band user association algorithm to optimize connectivity in coexisting RF/mmW/THz networks. The algorithm periodically calculates association scores for each user–base station pair based on real-time channel conditions across bands, accounting for factors like signal strength, link blockage risk and noise. It then reassociates users in batches to balance loads while considering user priorities and network conditions. We simulate the algorithm’s performance within a realistic propagation model, where high path loss, molecular absorption, blockage, and narrow beam widths contribute to lower coverage at higher frequencies. Results demonstrate the algorithm’s ability to efficiently utilize network resources across diverse operating environments. In addition, our results show that the choice of frequency band depends on the specific requirements of the application, the environment, and the trade-offs between coverage distance, capacity, and interference conditions.

Funder

Toronto Metropolitan University Faculty of Science Dean’s Research Fund

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3