Human–Robot Cooperative Control Based on Virtual Fixture in Robot-Assisted Endoscopic Sinus Surgery

Author:

He Yucheng,Hu Ying,Zhang Peng,Zhao Baoliang,Qi XiaozhiORCID,Zhang Jianwei

Abstract

In endoscopic sinus surgery, the robot assists the surgeon in holding the endoscope and acts as the surgeon’s third hand, which helps to reduce the surgeon’s operating burden and improve the quality of the operation. This paper proposes a human–robot cooperative control method based on virtual fixture to realize accurate and safe human–robot interaction in endoscopic sinus surgery. Firstly, through endoscopic trajectory analysis, the endoscopic motion constraint requirements of different surgical stages are obtained, and three typical virtual fixtures suitable for endoscopic sinus surgery are designed and implemented. Based on the typical virtual fixtures, a composite virtual fixture is constructed, and then the overall robot motion constraint model is obtained. Secondly, based on the obtained robot motion constraint model, a human–robot cooperative control method based on virtual fixture is proposed. The method adopts admittance control to realize efficient human–robot interaction between the surgeon and robot during the surgery; the virtual fixture is used to restrain and guide the motion of the robot, thereby ensuring motion safety of the robot. Finally, the proposed method is evaluated through a robot-assisted nasal endoscopy experiment, and the result shows that the proposed method can improve the accuracy and safety of operation during endoscopic sinus surgery.

Funder

National Natural Science Foundation of China

Shenzhen Key Laboratory Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3