Abstract
The mixed-effects model for repeated measures (MMRM) approach has been widely applied for longitudinal clinical trials. Many of the standard inference methods of MMRM could possibly lead to the inflation of type I error rates for the tests of treatment effect, when the longitudinal dataset is small and involves missing measurements. We propose two improved inference methods for the MMRM analyses, (1) the Bartlett correction with the adjustment term approximated by bootstrap, and (2) the Monte Carlo test using an estimated null distribution by bootstrap. These methods can be implemented regardless of model complexity and missing patterns via a unified computational framework. Through simulation studies, the proposed methods maintain the type I error rate properly, even for small and incomplete longitudinal clinical trial settings. Applications to a postnatal depression clinical trial are also presented.
Funder
Japan Society for the Promotion of Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献