Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module

Author:

Qiao Wenting,Liu Qiangwei,Wu Xiaoguang,Ma BiaoORCID,Li GangORCID

Abstract

Pavement crack detection is essential for safe driving. The traditional manual crack detection method is highly subjective and time-consuming. Hence, an automatic pavement crack detection system is needed to facilitate this progress. However, this is still a challenging task due to the complex topology and large noise interference of crack images. Recently, although deep learning-based technologies have achieved breakthrough progress in crack detection, there are still some challenges, such as large parameters and low detection efficiency. Besides, most deep learning-based crack detection algorithms find it difficult to establish good balance between detection accuracy and detection speed. Inspired by the latest deep learning technology in the field of image processing, this paper proposes a novel crack detection algorithm based on the deep feature aggregation network with the spatial-channel squeeze & excitation (scSE) attention mechanism module, which calls CrackDFANet. Firstly, we cut the collected crack images into 512 × 512 pixel image blocks to establish a crack dataset. Then through iterative optimization on the training and validation sets, we obtained a crack detection model with good robustness. Finally, the CrackDFANet model verified on a total of 3516 images in five datasets with different sizes and containing different noise interferences. Experimental results show that the trained CrackDFANet has strong anti-interference ability, and has better robustness and generalization ability under the interference of light interference, parking line, water stains, plant disturbance, oil stains, and shadow conditions. Furthermore, the CrackDFANet is found to be better than other state-of-the-art algorithms with more accurate detection effect and faster detection speed. Meanwhile, our algorithm model parameters and error rates are significantly reduced.

Funder

the Key Research and Development Program of Guangxi

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3