Channel Modeling of an Optical Wireless Body Sensor Network for Walk Monitoring of Elderly

Author:

Kaba AlassaneORCID,Sahuguede StephanieORCID,Julien-Vergonjanne AnneORCID

Abstract

The growing aging of the world population is leading to an aggravation of diseases, which affect the autonomy of the elderly. Wireless body sensor networks (WBSN) are part of the solutions studied for several years to monitor and prevent loss of autonomy. The use of optical wireless communications (OWC) is seen as an alternative to radio frequencies, relevant when electromagnetic interference and data security considerations are important. One of the main challenges in this context is optical channel modeling for efficiently designing high-reliability systems. We propose here a suitable optical WBSN channel model for tracking the elderly during a walk. We discuss the specificities related to the model of the body, to movements, and to the walking speed by comparing elderly and young models, taking into account the walk temporal evolution using the sliding windowing technique. We point out that, when considering a young body model, performance is either overestimated or underestimated, depending on which windowing parameter is fixed. It is, therefore, important to consider the body model of the elderly in the design of the system. To illustrate this result, we then evaluate the minimal power according to the maximal bandwidth for a given quality of service.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neonate Heart Rate Variability Monitoring Using Optical Wireless Link;2023 IEEE Symposium on Computers and Communications (ISCC);2023-07-09

2. Quality Indexes of the ECG Signal Transmitted Using Optical Wireless Link;Sensors;2023-05-06

3. Impact of optical wireless transmission reliability on ECG signal quality;2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP);2022-07-20

4. Modeling the Performance of Wireless Body Sensor Networks;2022 5th International Conference on Engineering Technology and its Applications (IICETA);2022-05-31

5. Path Loss and RMS Delay Spread Model for VLC-based Patient Health Monitoring System;2022 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC);2022-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3