Numerical Simulation of Turbulent Structure and Particle Deposition in a Three-Dimensional Heat Transfer Pipe with Corrugation

Author:

Lu Hao12,Wang Yu1ORCID,Li Hongchang3,Zhao Wenjun12ORCID

Affiliation:

1. Laboratory of Energy Carbon Neutrality, School of Electrical Engineering, Xinjiang University, Urumqi 830047, China

2. Center of New Energy Research, School of Future Technology, Xinjiang University, Urumqi 830047, China

3. School of Electrical Engineering, Xinjiang University, Urumqi 830047, China

Abstract

When colloidal particles are deposited in a heat transfer channel, they increase the flow resistance in the channel, resulting in a substantial decrease in heat transfer efficiency. It is critical to have a comprehensive understanding of particle properties in heat transfer channels for practical engineering applications. This study employed the Reynolds stress model (RSM) and the discrete particle model (DPM) to simulate particle deposition in a 3D corrugated rough-walled channel. The turbulent diffusion of particles was modeled with the discrete random walk model (DRW). A user-defined function (UDF) was created for particle–wall contact, and an improved particle bounce deposition model was implemented. The research focused on investigating secondary flow near the corrugated wall, Q-value standards, turbulent kinetic energy distribution, and particle deposition through validation of velocity in the tube and particle deposition modeling. The study analyzed the impact of airflow velocity, particle size, corrugation height, and corrugation period on particle deposition efficiency. The findings suggest that the use of corrugated walls can significantly improve the efficiency of deposition for particles less than 20 μm in size. Specifically, particles with a diameter of 3 μm showed five times higher efficacy of deposition with a corrugation height of 24 mm compared to a smooth surface.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3