The Effect of Different Mixing Proportions and Different Operating Conditions of Biodiesel Blended Fuel on Emissions and Performance of Compression Ignition Engines

Author:

Zheng Fangyuan1ORCID,Cho Haeng Muk1

Affiliation:

1. Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea

Abstract

Faced with the depletion of fossil fuels and increasingly serious environmental pollution, finding an environmentally friendly renewable alternative fuel has become one of the current research focuses. In order to find new alternative fuels, reduce dependence on fossil fuels, improve air quality, and promote sustainable development goals, castor biodiesel was produced through transesterification, and mixed with diesel in a certain proportion. The engine performance and emissions were compared and analyzed under fixed load and different speeds of agricultural diesel engines. Biofuel, as a fuel containing oxygen, promotes complete combustion to a certain extent. As the proportion of castor biodiesel in the mixed fuel increases, the emissions of pollutants such as CO, HC, and smoke show a decreasing trend. The lowest CO, HC, and smoke emissions were observed in the B80 blend at 1800 rpm, at 0.3%, 23 ppm, and 3%, respectively. On the contrary, the CO2 and NOx emissions of the B80 blend are higher than those of 2.7 diesel, reaching 2.5% and 332 ppm respectively at 1800 rpm. The lower calorific value and higher viscosity of biodiesel result in a decrease in BTE and an increase in the BSFC of the blends. Higher combustion temperatures at high speeds promote oxidation reactions, resulting in reduced HC, CO, and smoke emissions, but increased CO2 and NOx emissions. At high speeds, fuel consumption increases, BSFC increases, and BTE decreases. Overall, castor biodiesel has similar physical and chemical properties to diesel and can be mixed with diesel in a certain proportion for use in CI engines, making it an excellent alternative fuel.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3