Interpretable Wind Power Short-Term Power Prediction Model Using Deep Graph Attention Network

Author:

Zhang Jinhua1ORCID,Li Hui1,Cheng Peng2,Yan Jie3

Affiliation:

1. School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

2. School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

3. School of New Energy, North China Electric Power University, Beijing 100096, China

Abstract

High-precision spatial-temporal wind power prediction technology is of great significance for ensuring the safe and stable operation of power grids. The development of artificial intelligence technology provides a new scheme for modeling with strong spatial-temporal correlation. In addition, the existing prediction models are mostly ‘black box’ models, lacking interpretability, which may lead to a lack of trust in the model by power grid dispatchers. Therefore, improving the model to obtain interpretability has become an important challenge. In this paper, an interpretable short-term wind power prediction model based on ensemble deep graph neural network is designed. Firstly, the graph network model (GNN) with an attention mechanism is applied to the aggregate and the spatial-temporal features of wind power data are extracted, and the interpretable ability is obtained. Then, the long short-term memory (LSTM) method is used to process the extracted features and establish a wind power prediction model. Finally, the random sampling algorithm is used to optimize the hyperparameters to improve the learning rate and performance of the model. Through multiple comparative experiments and a case analysis, the results show that the proposed model has a higher prediction accuracy than other traditional models and obtains reasonable interpretability in time and space dimensions.

Funder

National Key Research and Development Program Project

Scientific and Technological Innovation Team of Colleges and Universities in Henan Province

Scientific and Technological Research Project of Henan Provincial Department of Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3