Biotechnological Valorization of Waste Glycerol into Gaseous Biofuels—A Review

Author:

Kazimierowicz Joanna1ORCID,Dębowski Marcin2ORCID,Zieliński Marcin2ORCID,Kasiński Sławomir3ORCID,Cruz Sanchez Jordi4ORCID

Affiliation:

1. Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland

2. Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland

3. Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland

4. Department of Basic Formation, Escola Universitària Salesiana de Sarrià, Passeig Sant Joan Bosco, 74, 08017 Barcelona, Spain

Abstract

The supply of waste glycerol is rising steadily, partially due to the increased global production of biodiesel. Global biodiesel production totals about 47.1 billion liters and is a process that involves the co-production of waste glycerol, which accounts for over 12% of total esters produced. Waste glycerol is also generated during bioethanol production and is estimated to account for 10% of the total sugar consumed on average. Therefore, there is a real need to seek new technologies for reusing and neutralizing glycerol waste, as well as refining the existing ones. Biotechnological means of valorizing waste glycerol include converting it into gas biofuels via anaerobic fermentation processes. Glycerol-to-bioenergy conversion can be improved through the implementation of new technologies, the use of carefully selected or genetically modified microbial strains, the improvement of their metabolic efficiency, and the synthesis of new enzymes. The present study aimed to describe the mechanisms of microbial and anaerobic glycerol-to-biogas valorization processes (including methane, hydrogen, and biohythane) and assess their efficiency, as well as examine the progress of research and implementation work on the subject and present future avenues of research.

Funder

Minister of Education and Science

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3