Architectural Characteristics and Distribution Patterns of Gravity Flow Channels in Faulted Lake Basins: A Case Study of the Shahejie Formation in the Banqiao Oilfield, China

Author:

Liang Zhuang12,Liu Yuming12ORCID,Chen Qi12,Zhang Haowei12,Hou Jiagen12

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China

2. College of Geoscience, China University of Petroleum (Beijing), Beijing 102249, China

Abstract

Internal depositional architecture and sand body distribution are the main challenges faced in the development of gravity flow channel deposits in China. Despite significant progress in the exploration and development of gravity flow deposits in recent years, our understanding of the internal architecture of composite sand bodies within gravity flow channels is still limited. Gravity flow channels represent a widely developed sedimentary type in the Shahejie Formation of the Banqiao Oilfield, Huanghua Depression. The lack of understanding of the spatial stacking relationship of gravity flow channel sand bodies hinders further development and remaining oil recovery within the oilfield. Through this study, we aimed to dissect the composite channels (5th architectural units) and single channels (4th architectural units) at the study area, using a combination of well logs and seismic data. We explored the identification criteria and spatial distribution characteristics of internal architectural elements within gravity flow channel reservoirs, based on abundant drilling data, well density grids, and 3D seismic data. By identifying and delineating single channels, we were able to summarize six identification criteria for single channels, including relative elevation differences, curve shapes, and the number of interbeds. We obtained the sand body scale and aspect ratio of single channels and established three depositional architectural patterns, i.e., isolated, lateral migration, and vertical accretion, thus revealing the differences in the spatial stacking relationships of sand bodies in different structural locations (blocks). This work provides new insights into the depositional architectural patterns of gravity flow channel deposits in the Banqiao Oilfield, Huanghua Depression.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3