A Review of the Synthesis of Biopolymer Hydrogel Electrolytes for Improved Electrode–Electrolyte Interfaces in Zinc-Ion Batteries

Author:

Vandeginste Veerle1ORCID,Wang Junru1

Affiliation:

1. KU Leuven, Campus Bruges, Department of Materials Engineering, Surface and Interface Engineered Materials, 8200 Bruges, Belgium

Abstract

The market for electric vehicles and portable and wearable electronics is expanding rapidly. Lithium-ion batteries currently dominate the market, but concerns persist regarding cost and safety. Consequently, alternative battery chemistries are investigated, with zinc-ion batteries (ZIBs) emerging as promising candidates due to their favorable characteristics, including safety, cost-effectiveness, theoretical volumetric capacity, energy density, and ease of manufacturing. Hydrogel electrolytes stand out as advantageous for ZIBs compared to aqueous electrolytes. This is attributed to their potential application in flexible batteries for wearables and their beneficial impact in suppressing water-induced side reactions, zinc dendrite formation, electrode dissolution, and the risk of water leakage. The novelty of this review lies in highlighting the advancements in the design and synthesis of biopolymer hydrogel electrolytes in ZIBs over the past six years. Notable biopolymers include cellulose, carboxymethyl cellulose, chitosan, alginate, gelatin, agar, and gum. Also, double-network and triple-network hydrogel electrolytes have been developed where biopolymers were combined with synthetic polymers, in particular, polyacrylamide. Research efforts have primarily focused on enhancing the mechanical properties and ionic conductivity of hydrogel electrolytes. Additionally, there is a concerted emphasis on improving the electrochemical performance of semi-solid-state ZIBs. Moreover, some studies have delved into self-healing and adhesive properties, anti-freezing characteristics, and the multifunctionality of hydrogels. This review paper concludes with perspectives on potential future research directions.

Funder

FWO

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3