Mineralogical and Chemical Tracing of Dust Variation in an Underground Historic Salt Mine

Author:

Puławska AleksandraORCID,Manecki MaciejORCID,Flasza MichałORCID

Abstract

The aim of this study was to investigate the causes of the evolution of atmospheric dust composition in an open-to-public subterranean site (UNESCO-recognized historic mine) at increasing distances from the air intake. The role of the components imported with atmospheric air from the surface was compared with natural and anthropogenic sources of dust from inside the mine. Samples of deposited dust were directly collected from flat surfaces at 11 carefully selected sites. The morphological, mineralogical, and chemical characteristics were obtained using scanning electron microscopy (SEM), X-ray diffraction (XRD), and inductively coupled plasma spectroscopy (ICP). The study showed that the air in the underground salt mine was free of pollutants present in the ambient air on the surface. Most of the components sucked into the mine by the ventilation system from the surface (regular dust, particulate matter, gaseous pollutants, biogenic particles, etc.) underwent quick and instantaneous sedimentation in the close vicinity of the air inlet to the mine. The dust settled in the mine interior primarily consisted of natural geogenic particles, locally derived from the weathering of the host rock (halite, anhydrite, and aluminosilicates). This was confirmed by low values of enrichment factors (EF) calculated for minor and trace elements. Only one site, due to the tourist railroad and the associated local intensive tourist traffic, represented the anthropogenic sources of elevated concentrations of ferruginous particles and accompanied metals (P, Cr, Mn, Co, Ni, Cu, As, Mo, Cd, Sn, Sb, Pb, and W). The gravitational deposition of pollutants from these sources limits the effects of the emissions to the local range. The used methodology and the results are universal and might also apply to other mines, caves, or underground installations used for museums, tourists, or speleotherapeutic purposes.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3