Abstract
The formation of dolomite is very challenging in the laboratory under ambient conditions due to kinetic inhibition. The goal of this study was to test the impact of pH cycling and zinc ions on the formation of magnesium-rich carbonates in saline fluids at a low temperature. Batch reactor experiments were conducted in two series of pH cycling experiments, one without and one with zinc ions, at 43 °C. The results after 36 diel pH cycles indicate a reaction product assemblage of hydromagnesite, aragonite and magnesite in the experiments without zinc ions, and of magnesite and minor aragonite in the experiments with zinc ions. The presence of zinc ions leads to a decrease in the pH in the acid phase of the cycling experiments, which likely plays a role in the reaction product assemblage. Moreover, the hydration enthalpy and other specific ion effects could be additional factors in the formation of magnesium-rich carbonate. The results show a clear evolution towards increasing incorporation of magnesium in the carbonate phase with cycle number, especially in the experiments with zinc ions, reflecting a ripening process that is enhanced by pH cycling. Hence, repeated pH cycling did not lead to more ordered dolomite (from protodolomite), but rather to the formation of magnesite with 92 mol% MgCO3 after 36 cycles, even though geochemical models indicate a higher saturation index for dolomite than for magnesite.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献