Laboratory Investigations Coupled to VIR/Dawn Observations to Quantify the Large Concentrations of Organic Matter on Ceres

Author:

Vinogradoff Vassilissa,Poggiali GiovanniORCID,Raponi AndreaORCID,Ciarniello MauroORCID,De Angelis Simone,Ferrari MarcoORCID,Castillo-Rogez Julie C,Brucato JohnORCID,De Sanctis Maria-CristinaORCID

Abstract

Organic matter directly observed at the surface of an inner planetary body is quite infrequent due to the usual low abundance of such matter and the limitation of the infrared technique. Fortuitously, the Dawn mission has revealed, thanks to the Visible and InfraRed mapping spectrometer (VIR), large areas rich in organic matter at the surface of Ceres, near Ernutet crater. The origin of the organic matter and its abundance in association with minerals, as indicated by the low altitude VIR data, remains unclear, but multiple lines of evidence support an endogenous origin. Here, we report an experimental investigation to determine the abundance of the aliphatic carbon signature observed on Ceres. We produced relevant analogues containing ammoniated-phyllosilicates, carbonates, aliphatic carbons (coals), and magnetite or amorphous carbon as darkening agents, and measured their reflectance by infrared spectroscopy. Measurements of these organic-rich analogues were directly compared to the VIR spectra taken from different locations around Ernutet crater. We found that the absolute reflectance of our analogues is at least two orders of magnitude higher than Ceres, but the depths of absorption bands match nicely the ones of the organic-rich Ceres spectra. The choices of the different components are discussed in comparison with VIR data. Relative abundances of the components are extrapolated from the spectra and mixture composition, considering that the differences in reflectance level is mainly due to optical effects. Absorption bands of Ceres’ organic-rich spectra are best reproduced by around 20 wt.% of carbon (a third being aliphatic carbons), in association with around 20 wt.% of carbonates, 15 wt.% of ammoniated-phyllosilicate, 20 wt.% of Mg-phyllosilicates, and 25 wt.% of darkening agent. Results also highlight the pertinence to use laboratory analogues in addition to models for planetary surface characterization. Such large quantities of organic materials near Ernutet crater, in addition to the amorphous carbon suspected on a global scale, requires a concentration mechanism whose nature is still unknown but that could potentially be relevant to other large volatile-rich bodies.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3