Predicting the Compressive Strength of Portland Cement Concretes with the Addition of Fluidized Bed Combustion Fly Ashes from Bituminous Coal and Lignite

Author:

Śliwiński JacekORCID,Łagosz ArturORCID,Tracz TomaszORCID,Mróz RadosławORCID,Deja Jan

Abstract

This paper presents the results of an extensive experimental study on the effect of the addition of two types of fly ash produced during fluidized bed combustion of bituminous coal and lignite, which differ substantially in their chemical and mineral compositions, on the compressive strength of concrete. Concretes with water/binder ratios of 0.65, 0.55 and 0.45 made with CEM I 42.5 R Portland cement and gravel aggregate were tested. The analyzed amounts of fly ash added to the binder were 0, 15% and 30% by weight. Based on the results of compressive strength testing after 28 and 90 days of curing, the relationships with the water/binder ratio and fly ash content in the binder were determined. The fly ashes used were highly active and capable of pozzolanic reaction. The relationships established allow the compressive strength of concretes based on composite cement-fly ash binder to be predicted with sufficient accuracy. The results presented in this study are an important contribution to the knowledge of concretes with combined binders. They have the exploratory value of establishing the dependence of compressive strength at 28 and 90 days on binder composition and water-binder ratio. In addition, they could be used almost directly in practical applications.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference47 articles.

1. Neutralność Klimatyczna A Perspektywy Zastosowania Betonu I Cementu W Budownictwie,2020

2. Application of CFBC Fly Ash in Structural Concretes,2010

3. Concrete—Specification, Performance, Production and Conformity,2016

4. Compressive strength development and durability of an environmental load-reduction material manufactured using circulating fluidized bed ash and blast-furnace slag

5. An investigation of bottom ash as a pozzolanic material

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3