Abstract
To investigate the influence of hydration on brittle deformation of oceanic crustal rocks, we conducted triaxial deformation experiments on gabbroic rocks with various degrees of hydration at a confining pressure of 20 MPa and room temperature, measuring elastic wave velocity. Hydrated olivine gabbros reached a maximum differential stress of 225–350 MPa, which was considerably less than those recorded for gabbros (~450 MPa), but comparable to those for serpentinized ultramafic rocks (250–300 MPa). Elastic wave velocities of hydrated olivine gabbros did not show a marked decrease even prior to failure. This indicated that the deformation of hydrated olivine gabbro is not associated with the opening of the stress-induced cracks that are responsible for dilatancy. Microstructural observations of the samples recovered after deformation showed crack damage to be highly localized to fault zones with no trace of stress-induced crack opening, consistent with the absence of dilatancy. These data suggest that strain localization of hydrated olivine gabbro can be caused by the development of shear cracks in hydrous minerals such as serpentine and chlorite, even when they are present in only small amounts. Our results suggest that the brittle behavior of the oceanic crust may considerably change due to limited hydration.
Funder
Japan Society for the Promotion of Science
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献