The Proposition of a Mathematical Model for the Location of Electrical and Electronic Waste Collection Points

Author:

Ruan Barbosa de Aquino Ítalo,Ferreira da Silva Junior Josenildo,Guarnieri Patricia,Camara e Silva LucioORCID

Abstract

Given the environmental impacts produced by the growing increase in waste electrical and electronic equipment (WEEE) and their current inadequate management, this article proposes a mathematical model to define the best location for installing WEEE collection points. The objective is to minimize the cost of the reverse logistics system concerning transportation, installation, opportunity cost, and distance between points and demand. We used a heuristic created from the greedy randomized adaptive search procedure and genetic algorithm meta-heuristics to solve the model, with part of the model variables being defined by another heuristic or by the JuMP v.0.21.2 and CLP Solver v.0.7.1 packages, to guarantee an optimal response to a subproblem of these variables. The model and its solver were written in the Julia Programming Language and executed in two test scenarios. In the first, three vehicles with small loads must collect at five points. In the second, a vehicle with greater available capacity must collect at five points. The results obtained show that the mathematical model and the heuristic are adequate to solve the problem. Thus, we understood that the proposed method contributes to the literature, given the criticality of the current scenario concerning the management of WEEE, and it can assist managers and public policymakers when providing inputs for decision-making related to the choice of the best location for installing collection points.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3